
Yellow
Paper
Technical
documentation

Version: 1.1 (070219)

MetaHash AG,
Gartenstrasse 6, 6300 Zug
Switzerland

2Yellow Paper

Abstract 3

Project Goals 4

#MetaHash Technical Features 5

Testing Methodology 6

Test 1. Building the network 6

Test 2. Bulk transactions verification latency 7

Test 3. Network failure 9

Test 4. Continental blockage and network recovery 10

Testing Results 10

Network Description 11

#MetaSync Data Synchronization Subsystem 12

Network Structure 12

Trust 14

Network Topology 14

Network Map 15

#MetaPoS Multi-Consensus Subsystem 17

#MetaHash Multiple Proof of Stake (MultiPoS) 18

Trust 24

Voting 24

Cryptography 25

Block Structure 25

Balance Model 28

Transactions 32

Protocol Features 33

Special-use addresses 33

Multisignature address 34

Frozen address 34

Child address 34

Forging 35

#MHC Delegation 35

Reward Distribution 36

Decentralization Strategy 40

Risks 42

Conclusion 45

Appendix 1. Data storage 46

3Yellow Paper

Abstract
2017 was the year of decentralized technology boom. Decentralization paradigm addresses
several key issues: the issues of trust in the system and controlling authorities, systems
scalability and reliability, and the need for third-party involvement. The decentralization
platform and app market, however, is limited by two major factors. First, geographic distribution
of nodes over insufficient connection infrastructure causes slow data synchronization and
validation. Second, the vulnerability of distributed networks to 51% attack1 leaves much to be
desired in terms of security and trust.

#MetaHash overcomes these obstacles by introducing dynamic node roles and implementing
a fragmented cryptographic proof. While simultaneously decreasing the volume of transmitted
data, this approach optimizes network synchronization, and solves issues of transcontinental
data transmission and archival. Furthermore, this approach has lead to the creation of
#MetaPoS, a multi-layered consensus system, enhancing the network resilience to 51% attack
up to 90%.

Utilizing the proprietary #MetaSync and #MetaPoS technologies, the #MetaHash team created
#TraceChain, the fastest blockchain protocol as of today. Load test results show throughput
above 50,000 transactions per second2. Methods and results can be found within this document.

#MetaHash is the next-generation high-performance and low-fee blockchain. High confirmation
speed and low data processing fees enable support for micro-transactions, and allow operating
decentralized applications in near real-time.

1. https://www.investopedia.com/terms/1/51-attack.asp

2. In a broad bandwidth (up to 600,000 transactions per second)

https://www.investopedia.com/terms/1/51-attack.asp

4Yellow Paper

Project Goals
Short-Term Milestones

Mid-Term Milestones

High-speed multi-blockchain based on #TraceChain protocol:

Design geo-distributed network architecture with minimum synchronization time while
maintaining maximum data transfer capacity.

Select a consensus model allowing for minimum transaction confirmation time while
maintaining transaction immutability.

Keep the cryptographic proof of asset ownership while decreasing amount of stored
and transmitted data.

Select an optimal balance model.

Mitigate excessive data storage issues within the time-proven blockchain network
structure.

Allow nonlinear validation of blockchain data.

Avoid hard forks while deploying major software updates.

Solve the issue of blockchain merges after network split.

Decentralised storage

#MetaApps: virtual app hosting

#MetaDNS: distributed name service

#MetaGate: multi-currency wallet and DApp browser

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

a)

b)

c)

d)

e)

f)

g)

h)

Mobile resource sharing (cellular and satellite communications, data transmission).
Consensus for mobile devices

DApp Marketplace

Digital identification with biometric data

IoT capabilities and compatibility

Universal reputation system

5Yellow Paper

#MetaHash Technical Features

Experimentally proven features of #MetaHash include:

The exceptional technical characteristics of the #MetaHash network result from two innovative
technologies: #MetaSync and #MetaPoS. #MetaSync data synchronization subsystem allows
complete and integral data updating around the world in under 3 seconds, while #MetaPoS
multi-consensus subsystem allows generating and validating the blocks in parallel with the
synchronization process. Each subsystem is thoroughly described in the following sections. The
test methods and results are provided below.

Transaction capacity: over
50,000 transactions per

second

Network synchronization
time: up to 3 seconds

Minimum number of
nodes: 4

Block generation
time: 1 second

Storage required per
10,000,000 financial
transactions: 2.5 GB

6Yellow Paper

Test 1. Building the network

This test evaluated the process of network building. Prior to network build, #TraceChain
evaluated the effective performance of each node and speed of data transmission between
nodes. In mainnet, such tests are randomly conducted for each node in the background.
Following the test results, #TraceChain AI algorithm, active on all nodes, computed an optimal
network map and assigned either of the following roles to each node: Peer, Verification, Core, or
Torrent. Fig.1 shows a graphic image of the resulting network map. The signal travels from the
outer layer towards the center (Peer node to Verification node and to Core node).

Fig.1. Network map

The tests involved 244 nodes across 5 continents. A wide range of node parameters were
tested: from low-performance (1 vCpu, 256 MB RAM) to high-performance (40 vCpu, 512 GB
RAM). Tests were conducted for 3 months, during which time more than 500 billion transactions
were processed.

Testing Methodology

7Yellow Paper

Fig. 2. Transactions propagation from Core to Torrent nodes

Test 2. Bulk transactions verification latency

This test studied the dependence of transaction time on the number of transactions. The
transaction time is defined as the total time from the transaction creation until the complete
propagation of the processed transaction across the entire network. An example of a transaction
propagation path across the network is shown in Fig. 2. The number of transactions sent varied
from 1 to 600,000 per second.

8Yellow Paper

The blue dots in Fig. 3 denote the acquired experimental data. 80,000x transactions marks
show the recorded threshold of network bandwidth per 1 second. Transactions that are not yet
processed by Core nodes are queued and remain pending until they are processed in the next
block. The interpolation polynomial (yellow line on the graph) appears linear up to the mark of
600,000 transactions per second, which proves an excellent scalability of #MetaHash network
within the studied range.

Fig 3. Verification time over the number of transactions

10

100 200 300 400 500 600

8

6

4

2

O
ve

ra
ll

Ti
m

e,
 s

ec
.

Transactions, 1,000 tps

0

9Yellow Paper

Fig. 4. Partial shutoff of the network

Test 3. Network failure

The test measured the network performance depending on the number of lost nodes. A certain
percentage of nodes was randomly turned off (10%, 20%, 30%, 40%, 50%, 60%, 70%). Fig. 4
illustrates the shutoff scenario. The results show that even with as low as 30% nodes active the
network is still fully capable of functioning, even keeping the claimed performance capacity,
network availability, and transaction verification and distribution speed. Similar results were
achieved after a simulation of failure in cluster server collocations (e.g. data center failure,
global ISP issues).

10Yellow Paper

Test 4. Continental blockage and network recovery

This test simulated a continental blockage, which lead to the network being split into two and
a subsequent rebuild of each, followed later by a merge between the two. The purpose was to
test the speed of consensus reorganization after the split and the synchronization speed after
network recovery.

In this scenario, after rebuilding, each network has a complete structure, but with fewer nodes.
Each network forms its own chain of transaction blocks, which later will be merged with
replacement of conflicting transactions. When the connection between networks is restored,
and cut-off nodes are reconnected to the network or new Core and Torrent nodes are added, the
effective performance slows down to 30,000 transactions per second during the period of data
synchronization. Therefore, the network effectively slows down 2.5-3 times for the duration of
the merge.

Testing Results
#MetaHash throughput allows handling of 60,000 to 80,000 transactions per second in
a broad range of environmental bandwidth loads (up to 600,000 transactions per second),
outpacing the claimed performance of 50,000 transactions per second. Exceeding the incoming
transactions rate over the claimed performance level, the processing speed is observed to slow
down. Network resilience is maintained for up to 70% of network failure, while further levels
show performance deterioration. In the event of a continental network blockage, the networks
retain local functionality and automatically rebuild as soon as connectivity is restored. During
rebuilding, networks function, however, in a slower mode.

11Yellow Paper

Network Description
#MetaHash is a single rank peer-to-peer network. Every member of the network runs the same
software and automatically gets its role assigned. Roles are assigned by the #TraceChain AI
algorithm executed on all nodes and described in detail in sections below.

Each role provides specific services in both synchronization and consensus subsystems. To
make the #MetaHash operation principles more comprehensible, the subsystems are explained
individually below.

#MetaHash network has 5 key roles:

#MetaGate

Peer node

Verification node

Core node

Master core node

Slave core node

Torrent node

12Yellow Paper

#MetaSync Data Synchronization
Subsystem
This section describes the #MetaHash network from the perspective of the #MetaSync data
synchronization subsystem and network design only.

The role assignment to network members in the data synchronization subsystem is maintained
by #TraceChain AI. Role assignment is primarily based on the nodes’ physical properties, such
as memory, CPU performance and network connection quality. However, performance is not
the sole criterion which determines node role. A similarly important characteristic is the node’s
geographic location.

The data synchronization subsystem roles functionality is described in Tab. 1.

Network Structure

Role Functions

#MetaGate Light user-client with an option to use part of the hard drive as an
archive storage when forging mode is live.

Peer node Accepts incoming connections from #MetaGate light clients; has
a direct connection to Verification nodes; does not have sufficient
processing capacity for synchronization tasks; ensures fast network
connectivity with clients and protects against invalid transactions.

Verification
node

Accepts incoming connections from Peers only; maintains long-distance
or cross-continental connections; maintains a direct connection to Core
nodes; has sufficient processing capacity to be used for synchronization;
serves as the network communication layer for the Cores.

Core node Accepts incoming connections from Verification nodes only; has a good
connection to Core nodes in other regions; has sufficient processing
capacity for fast block generation; controls synchronization processes.

Slave core
node

Duplicates Core node operation; will automatically replace the Core
node in case of unavailability or failure.

Torrent node Accepts connections from all roles; has sufficient storage capacity
to keep blockchain data; transmits data between #MetaGate and
other nodes; may be used to work with the raw data archive; may
report balances; may carry out specific tasks to support application
functioning.

Tab. 1. Data synchronization subsystem roles and functions

13Yellow Paper

Fig. 5. Network diagram

Network member’s role is not static. Members may change their roles based on the criteria
listed above and #TraceChain AI-based behavioral analysis.

The network is schematically shown on the Fig.5.

Verifications Network Layer
&

Cores

Main
Chain

Network Map
DataChain

Technical
DataChain

#MetaGate Clients

Peer Nodes Layer Torrent Nodes Layer

14Yellow Paper

#MetaHash network implements the node’s confidence factor defined as Trust. Trust is used
as weighting factor in role assignment and voting influence. Its value depends on the duration
of node’s operation in network, node’s performance, absence of network failures and errors
occurred due to this node. Trust is described in detail in “#MetaHash Multiple Proof of Stake”
section.

Data routing is the most crucial task for optimizing synchronization, therefore, #TraceChain AI
keeps the network map dynamically updated. Each member generates its own map of the entire
network, and updates it continuously, to speed up data delivery. This map is used for choosing
the optimal operator of a node’s own tasks as well as those of its clients.

Network maps generated by nodes are signed with account for their Trust and Stake (the voting
process is described in chapter “#MetaHash Multiple Proof of Stake”) and sent to Network Map
DataChain for public use.

The client generates its own network map while interacting with the various members of the
network. Thus, each client may choose the best operator for its request - that is the operator
with the highest level of Trust and best connection speed for this specific client.

In the event of a node failure automatic voting for roles redistribution takes place, based on the
network maps and nodes’ Trust.

To achieve an optimal network map #TraceChain AI queries every node for performance and
intra-node transfer speed data. Thus, #TraceChain AI randomly puts some nodes into a testing
mode to get this information. Tests are specifically designed in a way that a compromised node
will be unable to spoof the network by providing higher performance and speed values, since
it will be unable to understand that the simulation is on. This is achieved by providing the
information on running tests only at the final stages of interaction with the node.

Upon first connection to the network #TraceChain uses a list of node addresses received via
DNS. After the network map is finalized any further calls are carried out in accordance with this
map.

Trust

Network Topology

15Yellow Paper

Field Description

Binary IP Node IP in binary format

MH address Node’s wallet address with some coins, or the one the coins
have been delegated to

Node_type bitmask Bitmask for the current node’s role:

master

slave

verif

proxy

torrent-full

torrent-tx

torrent-balance

torrent-bkp

Parent nodes counter The number of parent nodes [type: varInt]3

Parent node 1 IP,
Parent node 1 MH
Addr, Parent node 2
IP, Parent node 2 MH
Addr, etc.

The list of parent nodes corresponding to the number of nodes
in parent nodes counter and sorted by priority. It is required to
specify the following parameters for a parent node:

Node IP

Node’s wallet address with some coins, or having coins
delegated to it.

Tab. 2. Object data structure

3. varInt - proprietary type of integer variable length data developed by #MetaHash similar to another example

The network map state is defined in a block of a separate blockchain. Each block describes the
state of all members in the network, relevant topology, performance test results and Trust.

Network Map

0x292563a7 MH_ADDR 0x0e varInt parent_cnt 0x6e2363a67 MH_ADDR 0x512d63a7 MH_ARRD 0x2d236a7 MH_ADDR

varInt data_size protobuf data

Fig.6. Object scheme

Binary IP MH address Parent nodes
counter

Parent node
1 IP

Parent node
1 MH Address

Parent node
2 MH Address

Parent node
2 IP

Node_type
bitmask

https://github.com/bitcoin/bitcoin/blob/c0ddd32bf629bb48426b0651def497ca1a78e6b1/src/serialize.h#L202

16Yellow Paper

Following the node description there is a protobuf-serialized4 binary list of reports on the test
results of other nodes, signed by the private key of this node.

For every node tested the results are saved in a format described in Fig. 7 and Tab. 4.

MH_ADDR Ping ms tps mbs sign/sec ram rate

varInt sign_size sign

varInt pubk_size pubk

Fig.7. Tests section schema

Role Parent nodes

Core node Slave core nodes

Slave core node Torrent nodes

Verification node Nodes the Verification node is giving the information to

Torrent node Nodes the Torrent node receives the data from

Tab. 3. Roles and parent nodes compliance

The type of parent node depends on the current node role of a network member according to
Tab. 3

4. protobuf - method of data packing into binary code proposed by Google:
https://developers.google.com/protocol-buffers/

The signature and public key are indicated at the block’s end to allow checking the validity of
test record.

Tab. 4. Data structure of Tests section

Field Description

MH_ADDR Node IP in binary format

Ping ms Ping in milliseconds

tps Transactions per second

mbs Network channel bandwidth

sign/sec Signatures per second

ram RAM available

rate Node’s Trust

https://developers.google.com/protocol-buffers/

17Yellow Paper

#MetaPoS Multi-Consensus
Subsystem
In any blockchain system, it is critical to define a state of consensus - a state wherein all
members of a network agree to a proposed change of, or addition to, existing blockchain
records. In the section below the network roles within #MetaHash are described exclusively
from the viewport of the #MetaPoS consensus subsystem in the context of existing blockchain
technologies. The section details the MultiPoS consensus model, cryptographic protection, the
blockchain structure and content, transactions and the #TraceChain protocol capabilities.

Two key requirements have been outlined when writing an algorithm for a consensus model:
reaching consensus at the highest speed possible, and providing improved security from
corruption within the network. At the time of writing, the Delegated Proof of Stake (DPoS)5
was the fastest consensus model, tested by many popular platforms. DPoS proposes that
each member in a network holds voting power (Stake), equivalent to the value owned by the
member. The member may then grant their Stake to a trusted delegate. This speeds up the
voting process, as the number of delegates is generally small. Unfortunately, in practice it
often appears that large amounts of Stakes are collected by a limited group of people, thus,
neutralizing the network decentralization.

The #MetaHash team has improved the DPoS model and developed a new algorithm - the
Multiple Proof of Stake (MultiPoS) consensus model. In this model, multi-layered validation
provides the basis for protecting a network against corruption. In cases when the central
network entities, which generate blocks, appear to be corrupted, the rest of the network
may vote to rebuild the network and to re-distribute the roles, thus, neutralizing the threat.
Furthermore, the block-creating cores, while managing synchronization, are not static. They
vary according to dynamic network parameters, and are not granted final validation rights. Also,
this model allows to run validation and block distribution processes in a parallel decreasing
consensus time. This innovative method of validation and rights management is at the core of
#MetaPoS technology.

5. https://bitshares.org/technology/delegated-proof-of-stake-consensus

https://bitshares.org/technology/delegated-proof-of-stake-consensus

18Yellow Paper

Reaching consensus

Key definitions

Core nodes are key players in the consensus. They compile transactions into blocks. The
following section addresses node synchronization processes, block generation, the network
consensus process, and the distribution of blocks to torrent nodes.

Tr - A transaction within the network (see next section for detailed description). Transactions
may undergo a validation process. Let the symbol Θ denote a signature validity check. Thus,
we may denote a transaction validity check as Θ(Tr). This function returns a True value when
a transaction is valid, and False otherwise. Let us also define methods to obtain elements of
a transaction. Specifically, the value of a transaction is defined as Trvalue , and a transaction
fee as Trfee .

Vr - Verification node. During formation of a block, the amount of verification nodes
may vary, and is represented in any given time as cur_verif. This value is, therefore,
a function of time, which can be computed as cur_verif(t), where t represents time.
We may define: max_verif as max_verif=max(cur_verif(t)) and min_verif as
min_verif=min(cur_verif(t)). We may also define access to a specific verification node within a
network as Vri , where i∈[1;cur_verif], evidently limited by cur_verif∈[min_verif;max_verif].

Cr - Core node. At the time of a block’s creation, the number of core nodes is fixed. This constant
is denoted as cur_cores. Access to a specific core node within the network is thus denoted as
Cri, where i∈[1;cur_cores].

Adr - An address within the system. Defined by a pair of private and public keys, and an account
balance. Methods to access properties of an address can be declared, and in particular, access
to the balance at an address is denoted by Adrbalance .

#MetaHash Multiple Proof of Stake (MultiPoS)

Peer node. Receives transactions from clients, checks transaction validity, sends transactions
to verification nodes. Does not keep the blockchain state in memory, therefore, does not
require significant computing resources.

Verification node. Checks the validity and economic feasibility of transactions received from
peer nodes. Keeps records of all transactions processed. Requires computing resources.

Core node. Accepts transactions from verification nodes, queues transactions for block
generation. Generates blocks. Used for consistent information sharding.

Slave core node. Provides post-verification of signed blocks. May substitute for a core node,
in case of core node failure.

Torrent node. Distributes blockchain information.

Roles and their functions in #MetaPoS consensus subsystem

1.

2.

3.

4.

5.

19Yellow Paper

Synchronization Phase 3

After forming a raw_block (A block of valid transactions according to the Active Core,
comprised of), the Active Core sends it to a random number of verification nodes. This number
is denoted as cnxt_verif. Verification nodes synchronize between themselves such that each
has a raw_block. Each verification node then forms the difference of sets ν = λ\η , so that each
has νi = λi\ η . In normal system operation, νi = ∅ , and thus:

When this equation is false, each verification node, for which νi ≠ ∅ sends νi to a system-
wide predefined amount cnxt_cores of core nodes according to a list. In this manner, the next
Active Cores will have additional transactions:

where k - indices of previous blocks, for which νi ≠ ∅ .

i∈[1;cur_verif]

i∈[1;cur_verif]

i∈[1;cur_verif] ω k =

∪ 𝛌iη =

∪ νi = ∅

∪

Synchronization Phase 2

At any given moment, the system is defined with multiple core nodes. In the second
synchronization phase, a temporary attribute role Active Core describes a core node that is
active for the duration of the creation of a block. As the set of cores is well-ordered, each
verification node at any point in time is aware of each active core. The current core identifier
can be obtained as cur_core = cur_block mod cur_cores. This formula is simplified by fixing
the number of cores in the system, in order to reduce the complexity of calculating the index. At
this stage, all sets λi will be transferred to Crcur_core , as follows from the role of Active Core.
For simplicity, Crcur_core = ACr is a valid notation. The result of this operation is set η , which
is formed from the union of all sets λi . Thus:

Synchronization Phase 1

Each verification node processes and calculates a multitude of transactions, that arrived at a
verification node and are deemed valid. λ is the set of transactions that match the condition
Θ(Tr) , and Adrbalance ≥ Trvalue + Trfee . Thus, for verification node Vri , a set of valid
transactions is λi . As λ is a set of transactions, this set inherits the properties of a transaction,
including hash transactions. A set of valid transaction hashes for a specific verification node is
defined as λh,i , where the first index (h) denotes the object’s properties, and the second (i) -
the verification node index.

⋅

⋅

20Yellow Paper

Synchronization Phase 5

If the condition of the fourth synchronization phase is achieved, then the core nodes form the
pos_block, which contains the signatures of all core nodes that have verified the block. This
block is then sent down to the torrent nodes.

The system involves up to 64 core nodes. Block creation proceeds by order from one core to
the next. In the event of failure of a core node, a slave core steps in as a replacement. A block
is only validated if checked and confirmed by more than 67% of the other cores and verification
nodes. Only after that will the next core in line commence formation of the next block, while
the current validated block is sent to 3 torrent nodes, for dissemination to clients.

Torrent nodes once again confirm a block, and if it is found valid, initiate dissemination of the
block to users and other torrent nodes. If, however, the block is found to be invalid, the torrent
nodes raise a signal, alerting the system that core nodes have been compromised, initiating a
role redistribution process.

Synchronization Phase 4

Or, as in transaction notation:

While νi is sent to each core node, verification nodes simultaneously send the raw_block to the
all other non-Active core nodes. Once all core nodes have received a block, the set ηh,j is formed,
in a manner analogous to the set λh,i . This set contains the hash of the raw_block transactions,
as received by each node. The transaction hashes are much more compact than the transactions
themselves, thus reducing the resource cost of the synchronization operation. As at this stage
only the hashes of the transactions are used, it follows that only the attribute ηh is required.
Further, consensus can be reached if and only if the set of hashes on the Active Core is equal
and equivalent to the set of intersections of transaction hashes on all other cores:

 j∈[1;cur_cores]

 j∈[1;cur_cores]

∩

∩

ηh,jηh ≡

∪ ∪()𝛌h,i ≡⋅ ⋅

⋅

⋅ 𝛌h,i i∈[1;cur_verif] i∈[1;cur_verif]

21Yellow Paper

Fig. 8 shows a flowchart describing the process of reaching consensus., Tab. 5 provides
descriptions and time intervals for each stage of the process. Мо = Mо d́e designation is used,
denoting the most frequent occurring observation in a data set.

Transaction flowchart and consensus algorithm visualization

#MetaGate

6.1

Core

Core

Core

Core

Core

Core

Core

TorrentTorrent

TorrentTorrentTorrentTorrent

TorrentTorrent

TorrentTorrentTorrentTorrent

Peer

8 9

6.4

2

Verif.

Core 7

3

Peer
Peer

1

45

Fig. 8. Consensus reaching diagram

22Yellow Paper

Tab. 5. Consensus reaching stages

Process Execution time

1 #MetaGate requests service data from torrent nodes. Mo=0.27s

0.05 - 1.5s

2 #MetaGate creates a transaction, signs it and sends it to
Peer Nodes.

Mo=0.27s

0.05 - 1.5s

3 Peer node checks the sufficiency and accuracy of data,
signature of the transaction and sends it to verification
nodes.

Mo=0.2s

0.002 - 0.8s

4 Verification node checks data accuracy and transaction’s
economic feasibility. Possessing the information on which
core node is currently active (which is currently creating
a block), the verification node sends a transaction to the
latter.

Mo=0.01s

0.002 - 0.8s

5 The core node generates a block from the incoming
transactions and gives it to the nearest verification nodes.

Mo=0.47s

0.001 - 1s

6 Processes occurring in parallel:

6.1 Verification nodes distribute block among the other
verification nodes and the nearest Core nodes.

Mo=0.27s

0.002 - 0.8s

6.2 Verification nodes check the transactions in a block.
Having found any lost transactions, verification nodes
deliver these to the following Core nodes, participating in
a block’s creation, to include the transaction in the next
block or to discard it completely.

6.3 Discarded transactions are delivered to Torrent nodes so
that the user could learn the reasons of discarding and the
status.

6.4 The block that was not yet verified by voting of all cores
is seeded to the root layer of torrent nodes to speed up
synchronization.

7 Core nodes verify if the block is correct, sign it and
deliver it to the root layer of torrent nodes via verification
nodes.

The information about the block delivered to the root
layer of torrent node is already verified by the core nodes.
Every torrent node on a way to a client may check the core
nodes voting result and add his own vote.

Mo=0.27s

0.002 - 0.8s

23Yellow Paper

According to test results described in Testing section, transaction verification and block
distribution by torrent nodes, starting from the transaction arrival to a peer node takes 1.69 sec
on average, and 5.5 sec as a maximum. Thus, it takes only 1.69 sec to generate an irreversible
block across global network of 244 nodes.

Process Execution time

8 The block is synchronized with the torrent node tree from
the root layer of torrent nodes in line with the network
map. In the event a torrent node does not validate that
the block is correct, it votes for the network rebuilding.
If 67% + 1 vote of torrent nodes are in favor of network
rebuilding, torrent nodes stop delivering new blocks until
network rebuilding is complete.

Mo=0.47s

0.002 - 1.3s

9 #MetaGate requests the status of transaction from torrent
nodes.

In case torrent node believes that the block is incorrect,
the former informs the client thereof. Hence, in the event
one of the torrent nodes has replied to a client that the
current block might be compromised, transaction cannot
be deemed as irreversible and the probability of network’s
reconfiguration is high. However, if all torrent nodes
inform the client that the network functions normally and
there are no compromised core nodes, the probability of
transaction rollback tends to zero.

24Yellow Paper

For voting weighted votes are used - superposition of node’s Stake and Trust.

Stake = Holder Coins + Delegated Coins

Effective Stake = Stake ⋅ Trust

Voting

The system employs a vote-based decision mechanism, this includes validation of blocks,
changes to network topology, or software updates.

Any address can delegate its coins to another address. The delegation process and its constraints
are described in detail in the Forging section. The total amount of coins, own and delegated,
held by an address, is called the Stake, and denotes the absolute value of the voting power of
that address.

Trust

Each node obtains a Trust factor between 0.01 and 1. Trust is increased by 0.005 units every 24
hours during reward calculation when all transactions are validated correctly, and decreased
by 0.05 in case of network degradation or by 0.5 in case of incorrect validation of a transaction
immediately after detection. Achieving a Trust value of 1 requires 198 days.

25Yellow Paper

Cryptography

For network security the digital signature algorithms of ECDSA (Elliptic Curve Digital Signature
Algorithm) family are used. SHA-2566 is used as a main hash function. These algorithms are
considered attack-resistant7 and have repeatedly proven their applicability in the sphere of
digital security. The results of the testing undertaken by COMPUTER SECURITY RESOURCE
CENTER are presented in Cryptographic Algorithm Validation Program report8.

As quantum computers advance, #MetaHash considers using post-quantum cryptography
algorithms9.

6. TBA

7. https://csrc.nist.gov/projects/hash-functions

8. https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/Secure-Hashing

9. https://en.wikipedia.org/wiki/Post-quantum_cryptography

10. https://metahash.org/docs/MetaHash_WhitePaper_EN.pdf

Block Structure

To achieve the optimal volume of data storage, archiving and blockchain multi-level high-speed
validation, #MetaHash uses 3 types of blocks:

Genesis block is a primary block, containing information on the initial release of coins and their
distribution10.

State block is a snapshot of a blockchain state. A State block is generated once per billion of
transactions (250 GB) and requires a vote by all verification nodes. State blocks make it possible
for verification nodes not to store older blocks, freeing space for new data, leaving old data in
the data storage archive.

Micro block is generated every second based on Genesis or State blocks. Micro blocks are
validated by a number of nodes that are available to run validation during the cycle, and
checked by all validators upon their generation.

5
State
Block

1

2

3

4
6

Genesis

Fig. 9.

https://csrc.nist.gov/projects/hash-functions
https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/Secure-Hashing
https://en.wikipedia.org/wiki/Post-quantum_cryptography
https://metahash.org/docs/MetaHash_WhitePaper_EN.pdf

26Yellow Paper

State blocks as an alternative to hard fork

Since a State block contains a complete network snapshot, a hard fork is not necessary in cases
of software updates. After network converts to new software, operations continue according
to the same rules, until the next State block is sent. Activation of the new State block also
activates the changes in the rules as required by the new software, allowing a simultaneous
and smooth update process.

In #TraceChain all validators vote simultaneously, rather than one by one. Therefore, if the
core nodes create an invalid block and if the following validators reject it for some reason, the
corruption check takes place and, where required, the network is rebuilt until consensus can be
reached. At the same time, every new transaction is buffered at the verification node layer, so
that processing of the buffer starts when the next valid block becomes available.

1

2 3 4

Corrupt
Block
2.1

Corrupt
Block
2.2

X

X

Genesis

Fig. 10. Block discarding process

Blocks discarding procedure

Network split and merge

2.1 4.1

2.2 4.2

Merge
State
Block

1Genesis

3.2

3.1

Fig. 11. Network split and merge

27Yellow Paper

Under extreme conditions, for example, during cross-continental connection failure or loss of
connection with any particular country, a network may split into two or more separate networks.
In this case each network will retain the original structure, but with the fewer nodes. After the
merge and synchronization of lost blocks, the incoming transactions will be accumulated in
a pool, and an unscheduled Merge State block creation will commence. All Micro blocks will
be saved and merged into one State block, then the network will rebuild itself, continuing
operations from the new State block.

To eliminate double spend motivation, those transactions which involve one address and
exceed balance will be deemed as valid for the network with the maximum votes. Recipients in
the network with fewer votes will be informed that the network has been split. In theory, the
recipient may initiate double spend in any other network, and the transaction may be cancelled.
Thus, the recipient will have to wait until the networks merge, while standard transactions will
be processed as normal. Though such a system has its flaws, it allows rolling back transactions
which have been made on purpose to achieve double spend (as opposed to the scheme, where
the longest blockchain wins and all transactions in it are subject to a rollback).

28Yellow Paper

Balance Model

The basis of any financial system is the asset management method. It is impossible to work
with assets without a clear understanding of available balance. Double-entry bookkeeping, as
applied in classic accounting, or triple-entry bookkeeping, favored in decentralized systems
accounting, would not be applicable to blockchain platforms, if platforms did not allow tracking
the user balance.

Currently, two popular balance models are: Unspent Transaction Output (UTXO) and the
Account Model. The first model is a directed graph of assets moving between users, the second
is a database with the current network state.

Both models have their advantages and disadvantages, as shown in Tab. 6. For more details
about issues with the models, please refer to the article prepared by HashEx11 consultancy.

11. TBA

UTXO model Account model

Higher degree of privacy for new addresses, the
coin does not have an owner

Need to store all accounts state

More easily scaled through sharding More efficient usage of a repository

Hard to work with smart contract states Intuitively clear approach

Allows using multi-threading for computations Light clients can analyse states
more easily

Complete transparency of assets movement High degree of fungibility; Harder to
track assets

Every transaction must have a
nonce

To prevent the state machine from
storing nonce, unused addresses are
deleted

Inconvenient tracking of internal
transactions in a public blockchain

Tab. 6. Pros and cons of UTXO and Account balance models

29Yellow Paper

Blockchain Model Consensus Smart contracts

Bitcoin UTXO PoW -

Ethereum Account PoW/PoS +

EOS Account DPoS +

Tron UTXO+Account DPoS +

Qtum UTXO+AAL PoS +

ICON Account+?12 LFT (BFT) +

A key advantage of the first model is the uniqueness of every coin, while the second model
provides a simpler smart contracts implementation. As both aspects are important for a modern
system, it is not reasonable to choose one model above the other. This is confirmed by solutions
applied for popular products. Tab. 7 presents the models used by the most popular blockchains.

It should be noted, that nearly all new systems have a hybrid balance model, while Ethereum
and EOS use a pure account model.

At the initial stage it was decided to use account model to speed up implementation. We have
also resolved an issue of data growth associated with nonce accounts storage by starting a new
nonce fork after each State block. Thus, the information of unused or extremely old accounts is
automatically erased from node memory.

Later a hybrid scheme will be considered: UTXO (for balances) and Accounts (for contracts).
Since #TraceChain features a lot of transactions, a standard Merkle tree in UTXO model may
take too much time and considerable disc space. Therefore, an AVL+ tree13 will be introduced, to
optimize the proof model and reduce resources required for data storage.

To put that in context, Fig. 12, 13 and 14 present the graphs of dependency of proof size (in
bytes) on tree size for three types of trees (Descartes’ tree (Treap), skip list and AVL), of proof
size per modification on tree size (Ethereum and AVL+) and of block processing time on blocks
total.

Tab. 7. Popular blockchain model comparison

12. No public information available on additional model.

13. Improving Authenticated Dynamic Dictionaries, with Applications to Cryptocurrencies
https://eprint.iacr.org/2016/994.pdf

https://eprint.iacr.org/2016/994.pdf

30Yellow Paper

2
12

2
13

2
14

2
15

2
16

2
17

2
18

2
19

2
20

600

800

1000

400

200

Pr
oo

f
of

 s
iz

e
(b

yt
es

)

Tree Size

0

AVL Tree Skiplist Treap

Fig. 12. Proof size on tree size dependency

2
12

2
11

2
13

2
14

2
15

2
16

2
17

2
18

2
19

2
20

1500

2000

2500

1000

500Pr
oo

f
of

 s
iz

e
pe

r
m

od
ifi

ca
ti

on
 (b

yt
es

)

Tree Size

0

Our AVL + TreeEtherium Tree

Fig. 13. Proof size per modification on tree size dependency

31Yellow Paper

Fig. 14. Block processing time on blocks in blockchain dependency

Our AVL + VerifierFull Verifier

Bl
oc

k
Pr

oc
es

si
ng

 T
im

e
(m

s)

Block in Blockchain

0 20K 40K 60K 80K 100K

1500

2000

1000

500

32Yellow Paper

Transactions

Transaction is a structure that describes a change in the blockchain state. For example, a
transaction can describe the following: “perform a cryptocurrency transfer operation between
two addresses”. Transactions are transmitted in binary form and confirmed with signature and
the public key14. Transactions in the system are presented in the form of a POST request. Fig. 15
provides a graphic representation of a transaction, while Tab. 8 provides a data structure inside
the transaction.

14. TBA

Field Description

to recipient address

value amount of assets

fee amount of fee

none blockchain secure number

data blockchain records

pubkey public key

sign signature

Tab. 8. Transaction structure

Fig. 15. Graphic representation of transaction

block_type block_ts block_headers

tx_size

tx0...txN

uint8 to_addr_size to_addr

varInt value varInt fee varInt nonce varInt data_size

data

varInt sign_size sign

varInt pubk_size pubk

33Yellow Paper

Protocol Features

#TraceChain is a binary protocol supporting financial transactions, data transactions and
technical transactions. Technical transactions provide an opportunity for vote delegation,
cooperative delegation for combination into forging pools, voting and validation, control of
child addresses and special-use addresses. Data transactions allow data storage and execute
such applications as messenger, gambling and other. Financial transactions allow transfer of
money between the addresses. All types of transactions are stored in different chains in order
to optimize the size of the stored data and disallow excessive amplification of financial chain
due to the technical data.

Main address. Used in most cases. No advanced features

Smart contract address. Assigned exclusively to smart contracts

Developer address. Used for smart contract administration

Hypervisor address. Used for virtualization system

Frozen address

Child address with withdrawal to parent or frozen address only

Child address with withdrawal to frozen address only

Multisig address

Address generation from the public key can be done in several steps:

Take a part of a 65-byte Public Key where first byte is 0x04, the next 32 bytes correspond
to X coordinate, and the last 32 bytes - to Y coordinate,

Perform SHA-256 hashing on the public key,

Perform RIPEMD-160 hashing on the result of the previous step,

Add a marker byte in front of the result based on the address type:

0x00 for main address,

0x08 for smart contract address,

0x09 for developer address,

0x10 for hypervisor address,

0x01 for frozen address,

0x02..0x06 for child address with withdrawal to parent or frozen address only

0x07 for child address with withdrawal to frozen address only

0x11..0x15 for multisig address,

Special-use addresses

1.

2.

3.

4.

5.

6.

7.

8.

1.

2.

3.

4.

34Yellow Paper

Perform SHA-256 hash on the result,

After another SHA-256 hash on the last result take only the first 4 bytes of the resulting
hash,

Add these 4 bytes to the end of RIPEMD-160 hash from item 3.

5.

6.

7.

Multisignatures (multisigs) are addresses requiring multiple users’ signatures to perform a
transaction. Two different approaches are used in #MetaHash, one for situations requiring
anonymity and the other for non-anonymous situations.

Freeze is performed by means of a special transaction which the address sends back to itself.
Together with the transaction a timestamp value is sent, until the end of which any transfer
operations from this address are disallowed. Incoming transfers are allowed, however. The
freeze time can be changed with a similar transaction, but only for extending it, not shortening.
Transactions with later timestamp events are prioritized over others. Such addresses are used
as security that the coins will remain unspent for a certain timeframe.

Special-use child address allows transactions only to a frozen address with a common parent
or to a frozen parent address. Such addresses are needed for online wallets requiring offline
wallet signatures for operations.

When an anonymous approach is required, the private key of the multisig is split into parts and
distributed between owners via Fiat-Shamir Secret Sharing method15.

In this approach multisig is a smart contract and requires that transaction is signed with several
private keys.

Multisignature address

Frozen address

Child address

Anonymous multisig

Non-anonymous multisig

15. https://en.wikipedia.org/wiki/Feige%E2%80%93Fiat%E2%80%93Shamir_identification_scheme

https://en.wikipedia.org/wiki/Feige%E2%80%93Fiat%E2%80%93Shamir_identification_scheme

35Yellow Paper

Forging
Forging is a process of block generation and validation which supports the operation of entire
#MetaHash network. Every node participates in the forging process. It is a high-performance
alternative to mining (used in PoW networks).

Forging is rewarded. The reward for forging is granted from the forging pool and from collecting
fees for transactions. Total size of forging pool is 4,600,000,000 #MetaHashCoins (#MHC)
unevenly distributed within the first 10 years of network operation16. Rewards are paid every
24 hours.

The periodicity of recalculation and distribution may vary based on technical needs of the
network. Unlike in PoW, nodes for #MHC forging never get obsolete and their efficiency does
not deteriorate, as their number is limited to the minimum number of coins required for a
specific role. The faster the network nodes are, the higher capacity the network will have.

As all nodes are essential to network operation, the rewards are distributed between all
members, not only between Core and Torrent nodes creating and validating new blocks.

Address holders unwilling to upkeep their own node may delegate their coins to their trusted
nodes and still receive forging rewards. During delegation, a technical transaction occurs.
Coins will be frozen for the delegation period and cannot be transmitted to another address or
delegated to another node until the delegation is canceled.

Delegation is canceled once every 24 hours during the next role reassignment operation. Coins
can be delegated once again only after cancellation of the delegation.

If coins were delegated to a compromised node that has been detected as performing malicious
activity, the delegation is canceled automatically, and all coins are frozen for 10 days to exclude
the possibility of any transfers or redelegation. Coins remain in the ownership of their holder,
but are unavailable for the next 10 days.

16. https://static.metahash.org/docs/MetaHash_WhitePaper_EN.pdf, chapter Financial Model

#MHC Delegation

https://static.metahash.org/docs/MetaHash_WhitePaper_EN.pdf

36Yellow Paper

Holder Coins At Stake - Amount of coins delegated by the address holder

All Coins At Stake - Amount of coins delegated by all the network addresses

ForgingPool - Forging stimulation pool issued once every 24 hours for 10 years

Commissions - All transactions or storage of data commissions received by the network during
the past 24 hours

Coin Holder Reward = 0.5 ⋅ ⋅ (ForgingPool + Commissions)
Holder Coins At Stake

All Coins At Stake

Coin Holder Reward is calculated according to the following formula:

Coin Holder Reward

Reward Distribution

Reward Share Reward Type

50% Coin Holder Reward. Reward to the
holders of #MHC

40% Node Reward

10% #MetaGate Reward. Reward of 1000 active
#MetaGate holders

Tab.9. Reward distribution among the members of the network

The financial stimulation system is aimed at adding nodes with the maximum throughput
capacity, uniformly among all roles and latency zones (normally these are geographical regions).
To maintain maximum performance of the system, it is beneficial to have a limited number
of high-performance broad bandwidth computers over the large number of computers per se,
while lower performance level computers may act as peer nodes and protect the network
core. Decentralization is achieved through an abundance of nodes in the pool that are able to
assume any role, and automatic decentralized change of node roles. The more saturated the
network is with high-capacity nodes, the higher amount of transactions the network is capable
of processing per unit of time.

Node Reward

37Yellow Paper

The network requires at least 64 computers matching each role.
During the node assessment the largest value is chosen out of all possible roles.
Only Crole ≥ 1 is taken into account during the calculation.

Crole stimulates adding such nodes and roles to the network, that are in deficit for the
balanced operation of the network.

Node reward calculation

Role value Crole

Crole ⋅
64

real number of nodes suitable for role

Node rewards are calculated based on the number of coins which are delegated to them, taking
into account their value for the network. The main advantage of the fastest nodes is that they
can gather more delegate votes and, therefore, increase the share of the received commissions,
while lower performing nodes have limitations on the amount of delegated coins.

To calculate Cperf the nodes are rated by their speed from 1 to 100% where 0-20% are the
slowest nodes, and 61-100% are the fastest according to the tests. Coefficient calculation rules
are presented in Tab. 10

Cperf stimulates adding nodes with the fastest channels and CPU for signature verification.

Performance coefficient Cperf

Coefficient Speed rating

1/3 0-20%

2/3 21-40%

1 41-60%

4/3 61-80%

5/3 81-100%

Tab. 10. Cperf calculation

38Yellow Paper

Cgeo stimulates adding nodes to the regions with fewer nodes (normally regions with costly
operation).

Geolocation coefficient Cgeo

Effective coefficient C

Cgeo =

C = Сrole ⋅ Cperf ⋅ Cgeo

effective delegated coins for Node =C ⋅ Trust ⋅ delegated #MHC

Node reward = 0.4 ⋅ ⋅ (Forging Pool + Commissions)

nodes in latency cluster ⋅ latency clusters amount

all nodes count in all latency clusters

effective delegated coins for Node

all effective delegated coins for all Nodes

Stakes by roles

Effective delegated coins (ed#MHC) = C ⋅ #MetaHash Coins at stake

With few nodes in the network, C multiplies the effect of the delegated coins and allows
the node to take a role owning much less delegated #MHC than the required value. With
overabundance of nodes in a certain role and region, the required #MHC stake may be higher
than specified.

Role ed#MHC stake #MHC reward limit

Core node 1.000.000 none

Verification node

Torrent node

Peer node

100.000 999.999

#MetaGate 100 99.999

Tab. 11. Required ed#MHC stake and reward limits for each role

The required stake of ed#MHC and reward limits for each role are specified in Tab. 11:

39Yellow Paper

Upon activation the node undergoes its primary assessment for the role it may fit according
to its technical characteristics. When 1,000,000 #MHC is reached with the adequate technical
properties, the node can be assigned to any role in the network, while receiving rewards for the
highest role. And vice versa, if the node is underperforming compared to the fastest network
nodes, it can get the rewards only within the limits for other roles.

#MetaGate reward is distributed among 1,000 random active members. If the number of active
#MetaGate nodes is below 1,000, reward for the empty slots will be allocated to the next
scoring member. #MetaGate is considered active if the client has been online at least 4 hours
within the past 24 hours.

5% — top reward

1% — second

0.5% — third

0.4% — fourth

0.35% — fifth

0.95% — from 6 to 100 per 0.01%

1.8% — from 101 to 1.000 per 0.002%

#MetaGate Reward

Role Sample HW config/example VM specification Purchase Lease

Core 2 x Intel® Xeon Gold 5120 CPU, 512GB RAM, 4TB
HDD $16.000 $600

Torrent Intel® Xeon® Silver 4110, 32GB RAM, 4TB HDD $2.000 $200

Verification Intel® Xeon® E3-1240, 8GB RAM, 1TB HHD $1.000 $180

Peer
Intel Core i3 7100, 4G RAM, 500GB HDD

Digital Ocean droplet / Linode VM

$850

-

$170

$50

Tab. 12. Recommended hardware and its cost.

Tab. 12 shows hardware characteristics allowing to maintain the claimed network performance,
as well as their estimated cost of purchase or lease. With sufficient number of nodes with
characteristics superior to the recommended ones, the network will automatically reassign the
underperforming nodes to roles such as Verification, Peer or Torrent.

Recommended hardware

40Yellow Paper

Decentralization Strategy
As of now, all network nodes are controlled by the #MetaHash team, therefore the system is
deemed centralized. Decentralization of the new technology should go through a number of
public tests, troubleshooting and real-time changes. The #MetaHash team plans to support the
network until it is fully decentralized and capable of self-development.

Phased decentralization will allow testing of each component one at a time with virtually no
risk for the network. There are 3 steps proposed for each component:

Testing in developers’ network

Public testing of updates via testnet

Update moved to mainnet

Decentralisation steps include:

Developers’ network launch. Load tests and verification of processing correctness with 500
billion transactions.

Public testnet launch.

Public mainnet launch.

Anchoring to popular blockchains.
The mainnet being already launched, multiple backups and archiving of data are required
for the increased security of the members. In order to avoid changes when a critical
vulnerability is detected and as a mitigation of the misuse of authority by the team, it is
planned to use anchoring of #TraceChain checksum hashes to public blockchains. Each
block’s hash containing calculation of the forging reward will be recorded to Ethereum and
Bitcoin blockchains. Therefore, each member will be able to check the validity of the entire
chain having static control points in two public blockchains.

Launch of the peer node forging. All incoming transactions will be processed by the
network of public decentralized nodes which allows to make sure no transactions appear in
the blockchain by any other means. Also, at this stage the mechanism of forging rewarding
of the first available role will be tested.

Torrent node launch. At this stage the network reaches the goal of being a public
decentralized storage of all transactions and blocks in a public repository and a torrent
verification of the cores’ performance correctness. Clients start receiving data from
decentralized nodes.

Switching on the automated role assignment by #TraceChain AI for the #MetaHash team
nodes. User nodes remain with the static roles for now;

Switching on the automated role assignment by #TraceChain AI for user nodes for Peer and
Torrent roles. This stage verifies the correctness of network map design through machine
learning and automated network rebuilding.

Start security testing with selected vendors against attacks on consensus and network
failures.

1.

2.

3.

1.

2.

3.

4.

5.

6.

7.

8.

9.

41Yellow Paper

Software update and start of bounty campaign focused on debugging and security issues.
At this stage main architectural vulnerabilities to network attacks are already eliminated
and the public bounty helps engage the public to eliminate rare types of attacks.

Full decentralization of cores, slave cores and verification nodes.

Software update ensuring a completely autonomous distribution of roles by the network.

Phased decentralization helps provide a continuous operation of the network as it is being
implemented and risk control in terms of various attacks on the network.

10.

11.

12.

42Yellow Paper

Risks
Risk assessment was done by HashEx17 based on FERMA18 standard. Only risks with negative
outcomes for the project have been studied. Three-dimensional assessment method has been
used for the risk description. Risk assessment was based on risk probability, consequences
(threats) and the organization’s exposure.

17. https://hashex.org/

18. https://www.theirm.org/knowledge-and-resources/risk-management-standards/irms-risk-management-standard/

Risk type: Operational.

Probability: Medium (Possible). Decentralized networks continuously experience attacks of
such type. The attack may not last too long as it is quite costly for the attacker (estimated to
$10,000 per day for a static-role system).

Consequences (Threats): Low.

Risk Control/Mitigation: Network automatically starts rebuilding if any node becomes
unavailable.

Risk type: Operational.

Probability: Low (Remote). Unlike the DDoS type in previous risk, this attack requires much
larger computational resources from the attacker, hence makes it an even more costly operation
in comparison to the previous risk.

Consequences (Threats): Low.

Risk Control/Mitigation: During high network load transaction fees start growing nonlinearly,
thus, attack quickly becomes impractical. With trying to maintain the 20% network load such
attack would cost $2,000 each second. With 80% load one transaction would cost $3.91 at ICO
price and the attack would cost $200,000 per second. Thus, such attack can increase transaction
price in the network only for a short span of time.

1. Node availability, DDoS attack on nodes

2. Network bandwidth, DDoS attack via multiple transaction generations

Risk type: Operational.

Probability: Medium (Possible). Attacker may modify the system local time to disrupt the node
synchronization.

Consequences (Threats): Low.

Risk Control/Mitigation: All key time parameters are measured in ticks by the nodes without
any reference to the server local time.

3. Attack through the change of system local time

https://hashex.org/
https://www.theirm.org/knowledge-and-resources/risk-management-standards/irms-risk-management-standa

43Yellow Paper

Risk type: Operational.

Probability: High (Probable). With the course of time the blockchain size may lead to the
impossibility to store the blockchain on a regular hardware equipment. At the moment of this
writing, the size of Ethereum exceeds 600 GB, while the size of Bitcoin is close to 200 GB. Given
the industry growth rate, in several years Ethereum size may exceed 10TB resulting in utter
impossibility to store it on personal computers.

Consequences (Threats): High.

Risk Control/Mitigation: One of #MetaHash features is storage of archived data in a distributed
repository with no negative side-effects on main network performance at the expense of State
blocks. According to #MetaHash calculations [See Appendix 1], with continuous peak load on the
network the storage of archived data will be financially efficient at least for 10 years. For this
scenario it is proposed to implement a cheap archive repository or deploy a purging mechanism
of the 10+ year old data. This decision should be taken by voting. Should #MetaHash ever face
any challenges related to storage of the historical data, it will be possible to perform a fork
approved through general voting and to create a new Genesis block in order to reduce the costs
related to historical data storage.

Risk type: Strategic.

Probability: Low (Remote).

Consequences (Threats): High.

Risk Control/Mitigation: In #MetaPoS consensus subsystem, solving the BFT problem of getting
the 67%+1 Stake simultaneously on several layers requires having control of over 90% of Stake.
Also, such attack is extremely hard to synchronize since as soon as the network node signals that
it’s compromised, it loses its Trust value and can only be supported by other compromised nodes.
Even with the unlikely emergence of the network with 90% of single-handedly owned Stake,
#MetaGate clients will start retroactively reject the blocks and stop trusting the compromised
torrents, effectively splitting the network in twos. Since clients using the network are its most
valuable part, possessing 90% of control over the Stake only gives control over the ‘dead’
network with no clients, while the remaining 10% will become the 100% of coin holders in the
new network.

4. Unlimited growth of blockchain size

5. Stake majority in single possession. 51% attack

Risk type: Strategic.

Probability: High (Probable). At the initial stage numerous critical nodes are under control of
developers. The network does not have the required level of decentralization yet and, thus, is
vulnerable to the malevolent changes.

Consequences (Threats): High.

Risk Control/Mitigation: Anchoring of #MetaHash to two popular blockchains: Bitcoin and
Ethereum on a regular basis. Launch of forging on peer nodes and torrent nodes to ensure
that all chain logs are stored in the public decentralized repository so that any illegitimate
alteration is easily noticeable.

6. Developers authority misuse during the system launch

44Yellow Paper

The risks described above are depicted on the risk map (Fig. 16).

Strategic risks above the tolerance line require a more detailed study as they may result in
ineluctable catastrophic consequences for the project as a whole.

Fig. 16. Risk map

High

Low Medium High

Medium

Low

Ri
sk

 C
on

se
qu

en
ce

s
(T

hr
ea

ts
)

Risk Probability

×5

×2 ×1 ×3

×4 ×6

Risk Tolerance Line

45Yellow Paper

Conclusion
From the project start in early 2017, the #MetaHash team have conducted a thorough research
of IT technologies and studied possible solutions of the project goals.

The following results were achieved:

Optimal synchronization structure of the geographically distributed network designed with
capacity of 18 Megabytes per second (>50,000 financial transactions) within 3 seconds.
This includes validation of the sender signature and check for balance availability to make
the transaction.

Decentralized storage of the archived data and state-block mechanism in place.

Various consensus implementations of new type, MultiPoS, were tested, where multiple
verification nodes vote for the block correctness while generating the next one. This allows
getting an irreversible transaction significantly faster and minimize a probable blockchain
fork and rejection of the branches.

Optimal balance model with all the benefits of blockchain network structure was chosen,
reducing the size of stored and transmitted data by 60% in comparison to average
performance characteristics of other blockchain platforms, as well as adding the capability
of nonlinear data validation inside the blockchain, resulting in a tenfold speed increase in
blockchain validation.

Successfully resolved network merge after a split caused by access restriction for a group
of members or a cross-continental blockage.

The seamless vote-based software update introduction mechanism was developed,
allowing to avoid network hard forks.

A complete production-grade release version of the platform was prepared, allowing fast
transactions at minimum cost by reducing infrastructure costs and increasing capacity. This
enables colossal opportunities for blockchain technology in real-time applications, Internet of
Things paradigms, micro-transactional applications, and others.

1.

2.

3.

4.

5.

6.

The #MetaHash Team
www.metahash.org

http://www.metahash.org

46Yellow Paper

Appendix 1. Data storage

The more transactions performed in the network, the more data must be stored. Any project
focused on a broad bandwidth faces the challenge of data storage and financial expenses
related to such storage.

In #MetaHash, with 50,000 transactions per second, the size of the data compressed in binary
form is shown in Tab. 13.

The most cost-efficient drives in 2018 are those with 4 terabyte capacity. The cost of 1 GB in
these products is $0.025, or $25.6 for 1 terabyte. One needs 96 drives a year or 1920 drives
for redundancy. Overhead costs to maintain such a storage system, including replacement of
damaged drives will amount to $48,000 per year. Data storage at peak load without duplication
will cost $9,878 per unit annually.

As the storage system is decentralized, in order to secure seed data for the network, significant
storage capacity will be required. Allowing for redundancy, the costs are expected to rise 20
times more than the unit price to ensure an adequate number of nodes and backups.

The cost of data storage drives at peak load, providing for 20x redundancy is equal to $118,546
+ $48,000 for overheads. In total, storage cost at peak load with more than 20x reserve is below
$200,000 annually.

Transaction volume at estimated peak load is shown in Tab.14.

In total, $1 is more than enough to cover the data storage expenses for 7 million transactions
per year, and 500,000 transactions with 10-year history records. The cost of storage for one
transaction is $0.00014 for 10 years at the estimated average peak load.

If the network reaches high costs for historical data storage, it may be subjected to forking,
confirmed by a general vote, creating a new Genesis block, to reduce data storage expenses.

per hour per 24 hours per month per year

45 GB 1,080 GB 32,400 GB 385 TB

per second per minute per hour per 24 hours per year

50,000 3,000,000 180,000,000 4,320,000,000 1,559,520,000,000

Tab. 13. Data size at 50,000 transactions per second

Tab. 14. Volume of transactions at the estimated peak load

	Abstract
	Project Goals
	#MetaHash Technical Features
	Testing Methodology
	Test 1. Building the network
	Test 2. Bulk transactions verification latency
	Test 3. Network failure
	Test 4. Continental blockage and network recovery

	Testing Results

	Network Description
	#MetaSync Data Synchronization Subsystem
	Network Structure
	Trust
	Network Topology
	Network Map

	#MetaPoS Multi-Consensus Subsystem
	#MetaHash Multiple Proof of Stake (MultiPoS)
	Trust
	Voting

	Cryptography
	Block Structure
	Balance Model
	Transactions
	Protocol Features
	Special-use addresses
	Multisignature address
	Frozen address
	Child address

	Forging
	#MHC Delegation
	Reward Distribution

	Decentralization Strategy
	Risks
	Conclusion
	Appendix 1. Data storage

